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Variational inequalities associated with monotone operators (possibly
nonlinear and multivalued) and convex sets (possibly unbounded) are studied in
reflexive Banach spaces. A variety of results are given which relate to a
stability concept involving a natural parameter. These include characteri-
zations useful as criteria for stable existence of solutions and also several
characterizations of surjectivity. The monotone complementarity problem is
covered as a special case, and the results are sharpened for linear monotone

complementarity and for generalized linear programming. [,
N
~
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SIGNIFICANCE AND EXPLANATION

Variational inequalities (VI's), including complementarity problems,
arise in many areas of applications, ranging from mathematical economics to
structural mechanics to boundary value problems and mathematical physics.
Vi's are central also in mathematical optimization, which itself has an
exceptionally wide range of application. One important general class of VI's
involves monotone operators; this case already covers linear and convex
constrained optimization and much more complex nonlinear phenomena as well.

One is usually interested in treating a given problem not in isolation
but rather as one of a parametrized family of similar problems, with attention
given to analyzing the nature of the dependency of the solution(s) on certain
natural parameters involved in specifying the original problem. This paper
introduces and studies a general notion of problem stability for VI's.
Roughly speaking, a VI is called stable here if it is solvable and remains
solvable for all small perturbations of the relevant parameters. Combined

with monotonicity, such stability entails significant additional properties

concerning the parametric solution behavior.

A

.
o

The heart of the paper develops a number of characterizations of, and

T, .\\‘

sufficient conditions for, stability. The results are established for general

& 4

monotone VI's in reflexive Banach spaces. When specialized to monotone

’—” -
Efﬂ complementarity problems, the results unify and considerably extend a large
P
;:} number of results from the finite-dimensional linear complementarity
o
- ) literature.
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STABLE MONOTONE VARIATIONAL INEQUALITIES |
L. McLinden ;.:'
A
¢ 1. Introduction. Let Z be a reflexive Banach space having dual

W, with {(z,w) denoting the value w(z) €R of a continuous linear

functional w €W at a point z €2Z. Let C be a given nonempty closed

convex subset of Z, and let T be a given operator (possibly multi- p

valued) from Z into W. The variational inequality 7%(a) assoclated :‘_fo_
with T, C and parameter a €W {is to .' .
find z €C N.B(T) cuch that, for some w € T(2), Lo«
V(a) AR
(z' -z, w-a)>0 forall z' €CNHKT) . )
' | RIS
PALIY

Here, H(T): = {z € Z|T(z) $ ¢} is the effective domain of T. Also of

use will be R(T): = {w €W|w € T(z) for some z € HXT)}, the range of T.

A prominent instance of %(a) is the complementarity problem C(a),

obtained by restricting C to be a cone. Writing Q 4instead of C in
*
the cone case and nutting Q : = {w € W|{(z,w) >0 for all z € Q}, one

can reformulate the problem into the more standard form

C(a)

find 2z € XT) such that, for some w € T(z), }
*
z€Q, wa €Q, {(z, w-2a)=0,

The case in which T is an anti-selfadjoint (i.e., skew-symmetric) linear

N,

operator is of particular interest, as it covers generalized linear f-:.:-:::
N
programming problems. Problems of the above sort have long been recognized NN
;'.\'.“
PO

. as being important to many different areas of application. )

This paper treats problem %(a) under the assumption that T 1is a

monotone operator, that is, satisfies f:j‘-’-_:zlj‘
;
(2' -z, w -w)>0 whenever w € T(2), w' € T(z') . 0‘_
o N
u"\*\
-,
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by :.-:i:
the National Science Foundation under Grant No. DMS=-8405179 at the University .ﬁx (Nt
of Illinois at Urbana=Champaign. ;AJ:
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[ This monotone case is arguably the most basic. It encompasses not only

i’ constrained nonsmooth convex minimization and constrained nonsmooth ' |

convex-concave minimax problems, but also a wide range of other variational

problems (e.g., involving differential and/or integral operators) which |

are not expressible in terms of such optimization. See Minty [{39] and
Stampacchia [56], respectively, for early, authoritative discussions of

monotonicity and of variational inequalities., There is now a very large

related literature having many different aspects. The reader might

= :

Ef consult Brézis [5, 7], Browder [11], Kachurovskii [25], Ghizzetti [23],

Ei Auslender [4], Mosco [44], Kluge [30], Pascali-Sburlan [47], Cottle-

:! Giannessi-Lions [14] and the references therein, in addition to the

;; references cited below.

WY

E: Several comments are in order concerning our ggﬁeral setting. The

- need to permit C to be unbounded is rather clear; for example, to cover
; the important complementarity problem C(a). Less evident, perhaps, is

:; the value of permitting T to be multivalued. This capability is actually
i necessary for treating many applications; for example, %(a)'s arising

;; from nonsmooth convex or convex-concave optimization in which the problem's
§ defining functionals fail to be continuously differentiable everywhere on
. relevant domains. Reflexive Banach spaces have been chosen because some of

the key tools used in the majority of our results appear to be limited

essentially to such spaces. Certain of our results, however, are valid

N in the locally convex Hausdorff setting; these will be indicated usually.

b3

\1

. We generally consider 7(0) to be the given problem (a = 0 being a ’
\l

:; harmless normalization here) and regard %(a), for a near the origin, as

- a perturbation of %(0). In optimization contexts such perturbations
l.
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usually correspond to adding a linear functional to the problem's
objective function and/or to varying the data v-~ctor which appears as the
"right-hand-side'" of the system of constraint inequalities,

The focus of the paper is provided by the following definition., We

say 7(0) 1is stably solvable (or just stable) if and only if Q(a) 1is

nonempty for all a in some neighborhood of the origin, where
Qa): = {z € 2|z solves ¥(a)} for all a €W .

Our goal is twofold. First, briefly to.dfaw attention to the abundance
of powerful, genefal information already implicitly availaﬁle for stable
monotoﬁe problems‘by virtue of the relatively well developed theory of
mohotone operatofs. And second, as the heart of‘the paper, to derive a
number of results relating to stability for the problems V(a). These
include various characterizations of stability. Some of the corollaries
are surjectivity results, in that they ensure M) = W, but without
necessarily requiring coercivity of T on C. (Here, of course,

X : = {a ew|Qa) # ¢}.)

The paper is organized as follows. In §2 we make precise how general
theory for monotone operators converts into facts about stable monotone
problems. Also, we introduce, and give various sufficiency criteria for,
a certain blanket hypothesis of maximality which is needed fo; most of the
results., In §3 we define the class of C's for which the strongest
results hold. These are the sets C which have at least one '"bounded
nontrivial section'". This notion is seen to be the proper generalization
to general convex sets of the familiar notion of weakly compact base for

cones.
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'5¥ Section 4 is the heart of the paper. Assuming 7(0) has a '"strictly

PN

4 feasible'" point, Theorem 1 assures (without maximality) that the sets !
.;j {i(a) are uniformly bounded for a varying near the origin, and Corollary lA

\.'.- -
_?i~ gives a convenient a priori bound on Q(0). Theorem 2 gives a sufficiency

\:) criterion for stability valid for single valued T's in general spaces.

S~

'ﬂ{ Theorem 3, on which many of the subsequent results depend, is a structure

55; theorem for M((). Theorem & presents six characterizations of stability.
‘ﬂ Theorem 5 adds an extremely strong seventh characterization of stability

f;ﬁ valid whenever T enjoys some very weak form of strict monotonicity with

:iﬁ respect to C.

_i In §5 we sharpen the earlier results for the generalized linear

:i< complementarity problem (abbreviated LCP), that is, problem C(a) with

:E; T linear. Theorem 6 gives further results for this situation. Theorem 7

Y :
' gives still sharper results for the case in which T is anti-selfadjoint

; linear.

?; In §6 we apply the results to linear programming in reflexive Banach

'{ spaces.

\:;

:; Finally, a word on notation. We denote the indicator function of C

ALY
'33: and the support function of C by wC and I¢» respectively. Thus,
P e

,1 vC: Z - (-o,»] and ¢t W = (-=,®] are the lower semicontinuous convex
I;} functions given by
e 0 if z ecC ,
A ¢'C(2) = ’ cc(w) = sup (z’w> .

o ® if z €Z\C z €C

:%: The recession cone of C and the barrier cone of C will be denoted by

~ .

3,' 0+C and D, respect:ively.' Thus,

X .
b

N
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oc={zezlc+zccl, D= {wew|o ) <=},

The abbreviations

cl, int, ri, core, conv,

respectively, denote the operations of closure, interior, relative interior,

algebraic interior, and convex hull applied to a set.

2. A maximality assumption and implications of stability. The

designation ((a) for the solution set to V(a) effectively defines a

multifunction (point-to-set function) (O from W into Z via
(a):= {z € Clz solves 7(a)} .

We begin with a convenient representation of (). It involves Nc. the

normality operator for C, which is the multifunction from Z into W

defined by
{wew|(z" - 2z,w) <0 forall z' €C} 1f z €C
Nc(z) o=
¢ if 'z €2Z\C .
Notice NC is exactly aﬁc, the subdifferential of ¢c. The sum
T+ NC =: M of T and Nc is the multifunction from Z into W given
by

M(z) := (T + Np) (2) := T(2) + N.(2) ,

with the convention that S + ¢ = ¢ = ¢ + S for any subset S of W,

Writing M™! for the multifunction inverse to M, which is defined by

S A AT T T S N R A U IR SR AR D X RO TR ._"‘...., R T Pt A S I
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sov™ly = Rany, RMY) = HM) and z eM l(w) 1f and only Lf w € M(z),

i} one obtains easily that Q(a) = M-l(a) for all a €W, that is, :
1.'.

" a=ula(renyt. (2.1) ,
. Hence,

o 7(0) 1is stable <= 0 € int KC) . 2.2)

) The following blanket assumption is in force for the remainder of

\

o~ the paper, unless otherwise stated:

-.‘ : !

E: M:=T + NC is maximal monotone. 2.3

{: This means M is monotone anﬂ, for each (2, W) €Z x W such that

RN _ .

:;: w € M(2), there exist some z € H(M) and w € M(z) for which

.\ .

= (2 -z, % -w) < 0. In our discussion the sum operator M in (2.3) is
\

;: automatically monotone, since T 1is monotone by hypothesis and Nc,

;i being the subdifferential of the convex function WC’ is also monotone. '
<.
Ly

We note that in fact here NC is maximal monotone [51], since C _is also

nonempty and closed. The maximality of the sum in (2.3) is a subtle

{

matter, but fortunately broad criteria are available to cover most cases

of interest.

PROPOSITION 1. The blanket assumption (2.3) holds under any one of
the following three conditions:

(a) HXT) oDC and T 1is (monotone and) singlevalued and hemi-

G ABRPAARE ) E AR

o

’a

Iy
l'l

continuous (i.e., continuous with respect to the weak* topology of W)

A
2

along each line segment in C;

SOy %

LA l,‘ [ [.J\"- .

I‘U.l.‘
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(b) T is maximal monotone and 0 € ri(conv KT) - C);

(¢) T 1is maximal monotone and T 1is locally bounded (i.e.,
uniformly bounded in a neighborhood of) some point of C Ncl K(T).
Notice that the requirement 0 € ri(conv BK(T) - C) in (b) is

implied by
either ¢ ¥ XT) Nint C, or ¢ ¥ C N int XT) ,
cr 2 finite-dimensional and

ok ri T NricC.

Criterion (b) of Proposition 1 follows from McLinden [37, Ther 1 ].
The other criteria (including the special cases of (b) just mention. =~ are

consequences of Rockafellar [52, Theorems 1, 2 and-3].

I~ conmnection with applying criteria (b) - (c) above to verify (2.3),
observe that T 1is known to be maximal monotone in each of the fcllowing
general cases: (1) {f T 1is the subdifferential of a lower semi-
continuous proper convex function on Z (Rockafellar [51]); (2) 1f T 1is
induced via a certain twist from the subdifferential of a closed proper
convex-concave function on Z = Z, X2y (Rockafellar [54]); (3) if T
is a closed, densely defined monotone linear transformation whose adjoint
is also monotone (Brezis [6, Theorem 1]).

Further maximality criteria for both T and M, applicable when 2
is a Hilbert space, can be found in Brézis [7].

Since maximal monotonicity (in the reflexive Banach setting) is

preserved under passage to the inverse multifunction, the blanket hypothesis

(2.3) is equivalent (cf. (2.1)) to the condition
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¢ is maximal monotone . (2.6)

Powerful facts now follow readily concerning the parametric solution

multifunction Q and, in particular (cf. (2.2)), stable %(0)'s.

PROPOSITION 2. Assuming (2.4) holds (equivalently, (2.3)), each of

the following holds:

(a) If O € int M), there exists a neighborhood U of the origin

such that

L} Q(a) 1is bounded .
a evu

(b) For each a € int HQ) the set Q(a) 1is nonempty closed
convex and bounded, and (1 1is upper semicontinuous on int H() from
*
the norm topology to the weak topology.

(c) The set

{a € int KD |Q(a) 1s a singleton, say z, and
Ha-z”~0me%rH%-a"fmanémtﬂm,alem%ﬂ

is a dense G6 subset of int 5(¢).

() 1f Z s finite?dimensional, the set
{a € int X |Q fails to be differentiable at a}

has Lebesgue measure zero. In particular, (I is singlevalued and
Lipschitz continuous (Lebesgue-) almost everywhere on int ().
Parts (a) and (b) here follow from Rockafellar [50, Theorem 1].

Part (c) was established independently by Fitzpatrick [21] and Kenderov-

Robert [29]. Part (d) was established by Mignot [38, Theorem 1.3].




Of course, any other properties established for maximal monotone

operators also apply to  with the aid of (2.4), i.e., (2.3).

Finally, we wish to point out that general sufficiency criteria for
0 € 5() [solvability] (2.5)
and for
W= 5 [global solvability; surjectivity of M] , (2.6)
respectively, have been provided by Rockafellar in (52, Theorem 5] and
(partly codifying .the singlevalued case obtained independently by
Hartman-Stampacchia [24] and Browder [9]) in [52, Theorem 4]. . We exhibit
below several sufficiency criteria for (2.6) not requiring coercivity of
the operator T + Nc.

0 € int A(() [stable solvability] , (2.7)

the basic case intermediate between (2.5) and (2.6).

3. Sets C which admit a bounded nontrivial section. A prominent

role is played below by certain closed convex sets C which, while
possibly unbounded, yet have bounded "nontrivial" intersection with at
least one closed halfspace., Let us make this'precise. For any w €W

and any ¢ € [0,0), define
S(w,e) := {z € C|(z,%) 2-¢c+ cc(w)] (3.1)

to be a section of C, where recall oc(w) = sup{(z',w)lz' € C}. Ve say

'The main focus of the present paper, though, is on’

that S(w,e¢) 1s a nontrivial section of C if and only if it is nonempty

- A A A .\ AN At AT AT AT
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.::-:f and ¢ > 0. It is clear that any section of C is expressible as
(x C
- S(w,e) = 3 0 (W) ’ (3°2) |
\\‘ e C ‘
X -
::;_- where aeoc designates the ¢-approximate subdifferential of cc (e.g., 1
" j
[42, §10.h]), and that S(w,e) 1is nontrivial if and only if ¢ >0 and ‘
- |
‘.\ w €D:= {w € Wloc(w) < ©}. A nontrivial section which is bounded con- :
e :
;;;-\; stitutes the correct generalization, to general closed convex sets in |
L2 |
\ reflexive Banach spaces, of the familiar notion of weakly compact base
f:j' (cross-sectional truncation) of a cone.
Q::‘: These various sets are illustrated in 2 -1{2 by
..;: C:= {z|22 > exp 21}. One gets D = {w|w2 <0<w, or w,<0= wl},
+
z ,?(NC) = {wlwz <0<w, or w,=0= wl} and 0 C = {z|zl <0< zz},
and both bounded and unbounded nontrivial sections 'o’f C exist.
A Sets which admit a bounded nontrivial section have important
-.{ properties. Among these is that
C has a bounded
; < .
J nontrivial section_} =>¢ # 1ot D . (3.3
‘:::f More specifically,
"~ there exists ¢ > 0 such
) that S(w,e) is a bounded{ <= y € int D , (3.4)
Sl nontrivial section of C
;E.-: in which event
._ for all \ € [0,o) the sets S(w + a,\) are
nonempty and uniformly bounded for all a in (3.5)
- some neighborhood of the origin.
6 These facts follow from the next two results.
A
»
: _:J




FROPOSITION 3., The support function O¢ of C 1is continuous on

core D; in particular,
core D = int D ., (3.6)
Also,
otc = p%:= {z ezI(Q,w) <0 for all w €D}. 3.7

This follows from Rockafellar [49, Corollaries 7C and 3C(d) ] applied

to the conjugate pair of functions 9

next result follows from independent work of Moreau [41, 42] and

and *C' In the same manner the

Rockafellar [49]; see also [3, Theorem 2 and ff.].

PROPOSITION 4, (a) For any w € core D and any p € [0,x), there
exists a neighborhood U of the origin such that
S(w + a,\) 1is bounded
a €U
0<Asw
and each set S(w + a,)) appearing in this union is nonempty.
(b) On the other hand, for any w €W, 1f S(w,¢) 1s nonempty and
bounded for some ¢ > 0, then w € core D and thus part (a) applies.
The property that C have a bounded nontrivial section is used in

the rest of the paper (by virtue of (3.3), (4.24), (4.25)) as a conven~

ient condition under which a number of implications involving stability

criteria are strengthened to equivalences.

Tl bt o il i

Y TP '
PO S N @

It is sometimes possible only to deal with a weaker notion than
stability, one permitting D () to have empty interior. Thus, we

define V(0) to be guasistable provided

- 'l .l lw

-~
)
0
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0 e rip(Q), (3.8)

"ri" denoting interior relative to the closed affine hull of pD(R).
Concerning this notion, see (4.27) of Theorem 3 and Corollary 3C
below. Also, in [36] can be found explicit quasistability results for

parametric, noncoercive general convex minimization.

4, Main results: the general monotone variational inequality case.

We begin with several results not requiring the maximality assumption
(2.3). The first one provides a convenient criterion for uniform bounded-
ness of the solution sets (Xa) for a varying near the origin. It can be

compared with Proposition 2(a). We write

() := U{T(2) ]|z €c}.

THEOREM 1. Even without assuming (2.3), if
0 Econv T(C) + int D , 4.1
then there cxists a neighborhood U of the origin such that

U Q(a) 1is bounded . (4.2)
acu

Proof. Hypothesis (4.1) gives
0 €W + int D, where w:= ¢ kak , (4.3)

for

v, €Tz z €C, N>0, LA =1 (4.4)

D

(summation over k = 1,,..,mj, Choose any

AR KPR DU N P C It A A N G PGy L LY
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u > max{0, oc(-i'v) + v}, where y:=¢T \k(zk.wk) . (4.5)

By (4.3) and Proposition 4(a), there exists a neighborhood Uo ~of the

origin such that

(U S(a - @,u) 1s bounded . (4.6)

a €U,

Consider any a €W and any 2z € ()(a). Then 2z € C and there exists
w € T(z) such that (z' - z, w - a)>0 for all z' ¢ C N XT). Consider

any index k. Taking z' = z, glves
oz(zk-z,a-w),
which together with monotonicity gives
(25 W) 2 - (Zow )+ (z - z,w)
2 - Gow) + (2, - z,a} .
Multiplying through by kk and summing yields

(z, W) > - v+ (- z,a),

r..'::

e

R"; where Z:= T M2y SO that

~

:'.. (z,a - q> 2 -y+ (;,8) .

t‘. By the arbitrariness of 2z this implies that
Q(a) < {z € C|(z,a - &) > - v+ (Z,a))

. C{zec|(za-@2-r2+0,a-D) (4.7

W .

- = S(a - W,\)

v

s

"

%4
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whenever

raee

G Ny

a4,

A > max{0, oc(a -w +v- (z,a)}. (4.8)

-
Ly -~

a s v e

For future use, observe that

‘
T
T

= Mg

(4.9)

s
]
s

the second inclusion in (4.7) is an
equality if A = cc(a -W) +y- (Z,a)>0 .

g
F

”
l'- L}

'
1AL

We now show that in (4.8) the choice A =y works for all a sufficiently

”

small. Since Oc - (z,*) =: ¢ 1is continuous at -& by Proposition 3, for
-:::
n""- )
j:: e:= p - max{0, OC(-G) + v} (4.10) |
-'.:! ' ‘:
e (cf. (4.5)) there exists a neighborhood U1 of the origin such that
- pla - @) < ¢ +o(-@) forall a €U, .
"
\.:_ By the choice (4.10), this yields
N
o cc(a - W) + max{-oc(-ﬁ),v} - (Z,a) <y for all a € U . (4.11)
_J
e Combining (4.11), (4.5), (4.8) and (4.7) yields
N ((a) CS(a - #,u) for all a €U, . (4.12)
__-\. Choosing U:= U N U, and combining (4.12) with (4.6) establishes (4.2).
‘I
-ﬂz The explicitness of the preceding proof provides a potentially easily
i{c obtainable a priori estimate for (i(a) which does not require knowing the
if neighborhood U in (4.2).
W
-.::
Y
u:: COROLLARY 1A. Even without assuming (2.3), for any
P
9.
2 a €conv T(C) + int D
.-~
oo
(X
R e R e R R
hal ‘L\'Ls'_i.\\]




c{z ecl(z,w-a)<y+ (Z, -a)},

with the set on the right nonempty and bounded, whenever

(Z,9) := % Xk(zk,wk) and vy:= T lk(zk,wk)

(summation over k = 1,..,,m) satisfy

Wk GT(zk)a kEC’ x‘kzo ’’

=1,

a €W + int D,

Y+ (£, -a) > inf (2',G5 - a).
| ]
€

(4.13) assuming only (4.15).

(4.13)

(4.14)

(4.15)
(4.16)

(4.17)

Proof. The argument given above for (4.7) establishes the inclusion

Now suppose (4.16) and (4.17) also hold.

By (4.17),

A= go(a - @) + v - (Z,a)20.

Hence, (4.9) implies the set on the right in (4.13) equals S(a - w,})

Since (4.16) and

for this 1\, so by (3.2) it equals 3,0.(a - w) .

Proposition 3 imply 9% is continuous at a - W, this set is nonempty

r

R S

e ]

and bounded by Proposition 4(a).

T A
‘,'j...i e

well to any locally convex Hausdorff spaces

A

"

The proofs just given for Theorem 1 and Corollary lA apply equally

Z and W paired in duality,

with weak boundedness in Z and Mackey interior in W, if one assumes

is finitely bounded above on some Mackey neighborhood in W (cf.

[3, pages 453-455)).
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[
F“ In the other direction, if one specializes to 2 =R" ‘and takes
!’ for C the usual nonnegative orthdnt, the estimate (4.13) refines
i;: (cf. [34]) to give the following 4, -norm bound :
-
- e -1 -
h aa) c{z 20| £ z < (v+ (E -aD], (4.18)
i=1 ‘
i:-:‘-
o where p:= min{v'ii '81'1 =1,...,n}, whenever a and the terms in (4.14)
b .
- satisfy (4.15), W - a > 0 (coordinatewise) and vy + {Z, -a) > 0.

Most of our subsequent results usc information about the structure

of S5 (cf. (2.1)). Even without assuming (2.3) one has

MO € TC) + E(NC) C T +D (4.19)
and

int D € RN G D . (4.20)

The first part of (4.20) follows from (3.2) and the nonemptiness assertion
of Proposition 4(a). The first part of (4.19) is a simple rephrasing of

the elementary inclusion

E(Tl + T?.) c ,?(Tl) + K’(Tz) . (4.21)

Employing the same technique as above, we can obtain a sufficiency

criterion for stable solvability valid beyond the realm of reflexive

-

P ‘n"l A

Banach spaces,

27

THEOREM 2, Let Z and W be any locally convex Hausdorff spacer

)
*,
s .

paired in duality, with Z (resp. W) assigned the weak (resp. Mackey)

par
R

topology induced by the pairing. Assume that T 1is singlevalued and

>

monotone on C, that T is continuous on the inter-

* »
l“.: ‘I' . .‘. :-

gection of C with any finite-dimensional subspace of Z, and that ¢

NI
.‘
LA

o
.

MO R

-:l:-.\‘ﬁii;ﬁl«:m:i::lﬁ:j
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is finitely bounded above on some neighborhood in W. Then
T(C) + core D € int B5(() (4.22)
(in addition to (4.19)).

Proof. let a € T(C) + core D. Then there exists Z € C such that
a - TZ € core D. By the argument given for (4.9) (begin just after (4.6))

we have
((a) ©S(a - T2,%) = {z €C|{z - £, TZ - a) <0} =: K,

where \:= oc(a - T2) - {(z, a - Tz). (This corresponds to there being

just one index k, and writing ‘(zk,wk) = (2,®), y= E,W), w = Tz.)

Recall (3.2). By the theorem of Moreau [41], [42] (see also [3, Theorem 2J),

S(a - TZ,\) 1s compact and nonempty and core D = int D, For any \

z € C\K, monotonicity implies
z-%2,T2-a)>2({-2,Tz-2a)>0., |

Hence, an existence result of Brdzis-Nirenberg-Stampacchia [8, page 297]

applies to C and Taz:- Tz - a, ylelding nonemptiness of Q(a). This

shows T(C) + core D € B(()) . Since the set on the left is open (by

core D = int D), (4.22) follows,

...l!l B

Theorem 2 strengthens an existence result of Allen [2, Theorem 3],
which was based on earlier work of Ky Fan {19, Theorem 1], [20]. Allen

requires that 2z - (z,7z) be (weakly) lower semicontinuuous on all of C

e

T TrrY Tve

i)
.

and doesn't obtain the stability conclusion. (We note that (2, Theorém 3)

-y

L
.

-

ostensibly treats a general quasiconvex f 1in place of the indicator
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case f = *C’ but the proof provided requires £ convex in order for the

counterpart of the present set K to be convex, and this general convex
case can be reduced to the indicator case by using Mosco's idea [43].)

From (4.19) and (2.2) follows immediately a weak necessary condition

for problem %(0) to be stably solvable:
0 € int(conv T(C) + D) . (4.23)

We say "weak' not only because of the presence of the convex hull operation,
but primarily because of the fact that, for two general monotone operators
T1 and TZ’ the set ,_?(T1 + TZ) in (4.21) can be drastically smaller than
R(Tl) + P(TZ).' For example, consider T1 = . T2 = L, where L 1is any
nonzero anti-selfadjoint (i.e., skew-symmetric) bounded linear operator
from Z into W. It is therefor: noteworthy that such collapsing behavior

cannot occur if 'T2 is a normality operator, such as N_, in a reflexive

C’
Banach setting and assumption (2.3) holds. This is established by the
following structure theorem for B((). In particular, notice (4.25) shows
that the weak necessary condition (4.23) is in fact also sufficient for

stability of %(0). Note also that from (4.25), together with the

elementary inclusion
conv T(C) + int D @ int(conv T(C) + D) , (4.24)

it follows that each set (i(a) appearing in (4.2) is nonempty (since for
U, in (4.6) one has -w + U° C int D).

.Henceforth, assumption (2.3) is in force.

¥ et e e e e e e
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THEOREM 3, One always has

int () = int(T(C) + D) = int(conv T(C) + D) (4.25)
and

cl () = c1(T(C) + D) = cl(conv T(C) + D) . (4.26)

I1f ¢ ¥ ri(conv T(C) + D), then
ri H() = ri(conv T(C) .+ D) . (4.27)

Formula (4.25), which sharpens the inclusion (4.22), will itself be

sharpened below in Corollaries 4A and 5A,

Proof. By the positive homogeneity of N,, the operator M:= T + N

c C

satisfies M + Nc = M, By this and (2.3), M + Nc is maximal monotome.

Since Nc=bcc and (using M + N, =M B5M) = 50 N 5N f‘:.b(Nc), it

follows from McLinden [37, Theorem ] that

rPM + Nc) “RM) + D = conv(PM) +D) , (4.28)

where = designates that the sets on either side have the same interior

and the same closure, and also, provided ¢ ¥ ri conv(®R(M) + D), that

ri KM + Nc) = ri conv(P(M) +D ) . (4.29)

ol

Observe that

.

v "“'T.’;"ﬁ"ﬁv
.

: gen +o= U (T(2) + Ng(2) + D)

= z €C N XT

. .

o « U (1(z) +D) = T(0) +D , (4.30)
e z €C

Y

[:Zj where the middle equality uses R(Nc) c D, the fact D 1is a cone, and
9 ‘

E." 0 ENc(z) for z € C. Therefore, using convexity of D,

;:-'.'

DJ'

If.
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e

¢

r7,

> v
%

.
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N
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conv(®(M) + D) = conv T(C) + D . 4.31)

Combining (4.30) - (4.31) with (4.28) - (4.29) yields (4.25) - (4.27),
since RM +N,) = RM) = KOD.

The power of Theorem 3 is suggested by the following result, which
recovers quite efficiently certain results of Minty [38a] and Rockafellar

(50, Theorem 1], [53, Theorem 2] proved originally by different methods.

COROLLARY 3A. Let Z be a reflexive Banach space with dual W,

and let T be a maximal monotone operator (possibly multivalued) from 2

into W. Then

int (T) = :l.nt» conv £(T)

and

cl R(T) = cl conv R(T) .

In particular, both int R(T) and cl R(T) are convex, AR(T) 1is dense
(resp. all of W) exactly when conv R(T) 1is dense (resp. all of W),

and ¢ ¥ int conv R(T) implies

cl int R(T) = cl R(T) , int cl R(T) = int RA(T) .
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1f ¢ ¥ ri conv R(T), then

ri R(T) = ri conv‘R(T) .

All of the above facts hold also with R replaced everywhere by J.

Proof. Choose C:= Z. One has N.(2) = {0} for all 2z, D = {0}
and T-l = (). The assumed maximality of T ensures (2.3) holds for this
C. Thus, Theorem 3 yields the.first and third assertions. The second follows
easily., Since 'I"1 satisfies the same assumptions as T, the part already
established applies to it, yielding the last assertion.

The surjectivity (li.e., global existence) condition

W= 50 ' (4.32)

is known to hold if C N B(T) is bounded or, more generally, if T + Nc
is coercive. (See the comment surrounding (2.6).)..Part (a) of the
following corollary characterizes such surjectivity (and incidentially
glives a necessary condition for coercivity of T + Nc). Additional,

more specialized sufficient conditions for (4.32) not requiring coercivity
of T+ N, appear belowlln gotollary SA (see also Theorem 5') and

Cc
Theorem 6.

COROLLARY 3B. (a) One has
W=05() <>W=conv T(C) +D .
(b) In particular, (4.32) holds {f C 1is bounded, which occurs 1if

and only if D =W. If 0'C = {0}, then C 1is bounded if it admits a

bounded nontrivial section (cf, 83) or if it is weakly locally compact.

» ORI S I R s R R I W e T T W
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- Proof. (a) 1s immediate from (4.25). For (b), by Rockafellar
l-\o
L2 {49, Theorem 5B] C bounded 1{s equivalent to D =W. Now assume
_3 0+C = {0}. If C 1is weakly locally compact, Kothe [31, page 343] implies
: C bounded. Finally, assume C has a bounded nontrivial section. 1If
C were unbounded, Rockafellar [49, Theorem 5B] would imply D 1is a
~.
b proper dense subset of W. On the other hand, (3.3) implies D has non-
-i: empty interior, which (since D 1is convex) implies int(cl D) = int D.
\j. Since the latter would be contradicted by proper denseness, C must be
RS
o bounded.
o
i:' Part (b) of Corollary 3B, given mainly for completeness, deals once

"‘

and for all with the relatively uninteresting (in the stability context

of this paper) case in which C has a bounded nontrivial secticn and

DA
S @Y
s e ¢ 4 & &I

O+C = {0). For all subsequent results the reader could assume that

o*c # {o0}.

:f' For general monotone variational inequality problems %¥(a) it is

':j helpful to make the following definitions.. The terms used are consistent
N with traditional terminology in the optimization literature, and their use
5:_ here is justified by Theorem 3. For any a €W, define %(a) to be

:fj strictly feasible, strongly feasible, feasibie, or weakly feasible,

[ ]

X8 respectively, according to whether the paramcter a belongs to the set
a T(C) + int D, ri(conv T(C) + D), T(C) + D, or conv T(C) + c1 D .
-’. The following is immediate from (4.27) of Theorem 3 and the fact that

a finite-dimensional convex set has nonempty relative interijor.
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—

e

COROLLARY 3C. One always has

a s, v 0
P

strong feasibility = quasistability

v

L

Yy Ay

(recall (3.8)), with the converse also true when Z 1is finite-

RV

- dimensional.

’

e

The following theorem provides a number of characterizations of

stability. More will be added in Theorems 5 and 6.
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THEOREM 4, Consider the following seven conditions:
1) €(0) 1is nonempty and bounded [compact existence].
(11) (Xa) 1is nonempty and uniformly bounded for all a in
some neighborhood of the origin.
(III) 0 € BK() and ( 1is locally bounded at the origin (i.e.,
((a) 1is uniformly bounded for all a in some neighborhood of the origin),.
() 0 € int 5K () [stability].
4] 0 € int(conv T(C) + D).

(VD)

o

€ conv T(C) + int D.
(VII) O €T(C) + int D ([strict feasibility].

One always has
(1) <= (I1) <= (I1I) <=> (IV) <=> (V) <= (VI) <= (VII) .

If C admits a bounded nontrivial section (see §3), then all seven

conditions (I) - (VII) are pairwise equivalent, and furthermore,
0 € HM)\int K = Q(0) contains a halfline . (4.33)

Proof. Clearly, (VII) = (VI) = (V) and (II) = (I) and
(I1) = (I1I). By Rockafellar (50, Theorem 1], (III) => (IV) => (II).
By Theorem 3, (1V) <=> (V). We conclude the proof by establishing (4.33)
and (I) = (1IV) => (VII) under the assumption C admits a bounded

nontrivial section, that is (cf. (3.3)), assuming
0 #intD . (4.34)

Observe that Theorem 3 with (4.34) and (4.24) imply

0 # int A0
L "I "R, "R 1 v . w . ISR TP S
e A P S R LR L e e R e A T 06t ._,‘.\\ -
BRSNS AR NI LN NN -...,.x ':..\ ‘_\_\"\ \ - ._‘_* \t_\

y -J' '.z-}.&')‘.e}i* ".r".r}.p} ‘M.nﬂ-"‘.ﬂi?.r)



Corollary 3A and (2.3) imply

int ) = int conv () ,

and also

int conv B({) = int cl conv 5(()
(since conv B(() 1is convex with nonempty interior). Therefore,
¢ # int B(¢) = int cl conv K) . (4.35)

In view of (4.35), 1f 0 € HD\int KD, then Rockafellar (50, Lemma 3]
implies (}(0) contains at least one halfline. This establishes (4.33),
from which follows (I) => (IV). Finally, let (IV) hold. By (4.34)
there exists som‘e. b € - int D Then (IV) implies there exists ¢ >0

sufficiently small that
a:= ¢b € int KD < KD = RA(T + Nc)

and a € - int D, Hence, there exists (z,w) such that z €C, v € T(2)

and a €w + Nc(z). Thereforg,

-w €Nc(z) -aCD+intDC int(D +D) = int D
(since D 1is a convex cone), and so

0O Ew+intDcCT(C) +int D .

Part of Theorem 4 relates to previous work. The existence part of
(VII) => (I) generalizes results obtained for the case 2 =R" and C
a cone by More [40, Theorem 3.2] (see also Saigal [55]), Karamardiam

(28, Theorem 4.1] and McLinden [35, Theorem 1]. Also, (VI) = (I)

generalizes in the same way a result of Mangasarian-McLinden [34, Theorem 1.4].
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The following corollary points out, among other things, that strict

feasibility and the superficially weaker condition
0 €conv T(C) + int D ,

which we call distributed strict feasibility, are actually equivalent

whenever they make sense, i.e., whenever ¢ # int D.

COROLLARY 4A. Assume C admits a bounded nontrivial section. Then
the four conditions

compact existence, stability, strict
feasibility, distributed strict feasibility

are pairwise equivalent. Moreover,
int () = conv T(C) + int D = T(C) + int D (4.36)
(in addition to (4.25) of Theorem 3),.

Proof. The first assertion simply restates the equivalence among
I, avy, (vi1), (vi). For the second, consider any fixed a €W.

Since the multifunctions T; and Ma defined by

Ta(z):- T(z) - a , Ma(z):= M(z) - a
satisfy

HT) = KD - (0,8) , ) = 200 - (0,3) ,

where () denotes the graph of a multifunction considered as a subset
of Z xW, one has Ta monotone (resp., M, maximal monotone) if and only
if T 1is monotone (resp., M is maximal monotone). Also, the multi-
function fL:- (M.a)'1 satisfies JK{L) = B(() - a. Now apply to Ta and

CL the equivalence among (1V), (VI), (VIiI).
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COROLLARY 4B, (a) 1In order for ()(a) to be nonempty and uniformly
bounded for all a in some neighborhood of the origin, it is sufficient
that, for some W € conv T(C) and & > 0, the set
{z eclz,@) < g+ inf (2',@)})

z' €C
' be bounded.

(b) When C admits a bounded nontrivial section, in order for
((0) to be nonempty and bounded, it is necessary that some W € T(C) be
such that for all A\ € [0,=) the sets

{z ecl(z,iv'-a)51+ inf (z',% - a)}
z' €C

be nonempty and bounded for all a in some neighborhood of the origin.

Proof. Part (a) restates (VI) => (I1) with the aid of (3.4). Part

(b) restates (I) = (VII) with the aid of both (3.4) and (3.5).

COROLLARY 4C. If C admits a bounded nontrivial section, then
fi(a) 1is unbounded if and only if a € () \int K, in which event Q(a)

i contains at least one halfline.

Proof. For given a €W apply Theorem 4 to the operator T,:=T-a,
using the equivalence (I) <= (IV) and also (4.33).

Corollary 4C overlaps a result of Robinson [48, Theorem 27], who treats
5 . the case of Z -Rn, C polyhedral and T a positive semidefinite matrix,

jﬁ} and obtains for it additional, detailed information.

v
= The next theorem and corollary augment significantly Theorem 4 and
‘_ Corollary 4A. We give two formulations. For the simpler one, recall

that T is strictly monotone on C provided

-, o o
- - “ v e®a
. " .
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(z' - z, w' - w)> 0 whenever

w ET(2), w' €T(2"), z €C, z' €C, z $# 2' .

THEOREM 5. Along with conditions (I) through (VII) of Theorem 4,
consider the following condition:

(VIII) O € conv T(C) + cl D [weak feasibility].
The eight conditions (I) - (VIII) are pairwise equivalent whenever the
following assumptions hold:

(a) C admits a bounded nontrivial section and 0+C # {0);

(b) T 1is strictly monotone on C;

(c) either (cl) T 1is singlevalued monotone and hemicontinuous
along each line segment in C C KT), or else (cz) T is maximal monotone

with C C int conv A(T).

The proof is deferred; more specifically, a stronger result will be

proved below.

COROLLARY 5A. Let assumptions (a), (b) and (c) of Theorem 5 hold.

Then the five conditions

compact existence, stability, strict feasibility,
distributed strict feasibility, weak feasibility

are pairwise equivalent, ‘Moreover,

int () = H() = conv T(C) + ¢l D 4.37)

(in addition to (4.36) of Corollary 4A and (4.25) of Theorem 3). 1In

particular,

conv T(C) + cl D closed => W = 5¢) .
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Proof. This follows just as Corollary 4A does from Theorem &.

(Use (4.19) also.)

The conclusions of Theorem 5 and Corollary 5A remain valid under
considérable relaxations of hypotheses (b) and (cz). For this, we

introduce two definitions. Let us say T is asymptotically strictly

monotone on C provided for each z € C there exists (>0 such that

w €ET(2) , w' £T(") ,
z' -z ¢ (O+C)\CB , w (z'. -z, w -w)>0,

w -we- (0'0°,

where B:= {z ¢ Zl”z” < 1}. This condition is satisfied trivially by any

T strictly monotone on C (take { = 0). Incidentally, it is eaéy to

see that ((a) consists of at most one point when T 1is strictly monotone

on C. The second definition is motivated by the need to have a certain :
auxiliary operatof, which occurs in the proof of Theorem 5' below, be f

maximal monotone. We say that T and C are in good position provided

i
for each z € C N 5(T) there exists d € int D such that (

for every 6, <0 there exists 62 < 61 for

1
which 0 € ri(conv KXT) - c,) »

where

c,:=z+ {f eo'cle, < (£,a) < 4,1 . (4.38)

This condition is satisfied in a trivial way if C C int conv ST) and
hypothesis (a) of Theorem 5 holds (use Cz CC and Lemma 2 below). More

E{; interesting is the following general sufficient condition.
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LEMMA 1. Assume C admits a bounded nontrivial section and
otc # {0}. Then T and C are in good position if for each

z €C N XT) there exists { >0 such that either
z + ((0+C)\QB) C int conv AXT) (4.39)
or else
¢ # int 07C and z + ((int 07C)\¢B) c conv K(T) . (4.40)

For proving this as well as Theorem 5' below, the following is

useful.

LEMMA 2. Assume C admits a bounded nontrivial section and
0%c # {0}. Then for all d € int D (récall (3.3)) and al § <0 the

set {z € 0+b|(z,d) = 8§} generates a base for otc.

Proof. Let d € int D, If any nonzero Z € 0+C satisfied

0 < (Z,d) then, for any z €C,
z+ Zjo <A <o} {z €C|(z,d)> (z,d))
=S(d,e) for e:= g,(d) - (z,d) € [0,%)

would imply S(d,e) unbounded, in violation of (3.4) - (3.5). Therefore

{(z,d) < 0 for all nonzero 2z ¢ 0+C. The lemma follows from this.

Proof of Lemma 1. Let z €C N HMT). Pick any d € int D, and let

61 < 0. By hypothesis there exists { > 0 such that either (4.39) or

(4.40) holds. Pick & < - (lld|l. Then

(z,d) <5, ™2z ¢ (B . (4.41)
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Put p:= min[&o,al} and pick 6§, <, - ¢ for some (any) ¢ >0. Then

62 < 61. Define Cz as in (4.38). By 62 <u<0 and Lemma 2,
there exists z € 0+C with 52 < (£4d)<yu. (4.42)
By choice of p and (4.41), such a z satisfies
z ¢ (B (4.43)

as well as (z,d) < 6, So z'®=z +2 € Cz.' 1f (4.39) holds, (4.43)

yields z' € int conv XT) as well, so that
0=2z' - 2" € int conv XT) - C, C int(conv XT) - Cz) .
No.w suppose (4.40) holds. Then

int C_ =z + {Z €int o'cls, < (,9) < 8,1,

and the z in (4.42) can be chosen from int otc. Then
z':= 2z 4+ Z € int C,, and by (4.43) and (4.40) also z' € conv KXT).

Hence
0=2"'-2" €conv XT) - int Cz C int(conv KXT) - Cz)

in this case also.
A simple illustration of the conditions in Lemma 1 is provided in

Z -Rz with C the nonnegative quadrant and any T satisfying
XD =Cc VU {zlzl <0,z +12 exp(-zl)} .

Here, 0+C = C = D, For any 'z on the nonegative zl-axis, (4.39) fails
and (4.40) holds. For any other z in C N XT), (4.39) and (4.40)

both hold.
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. Equipped with the two definitions given above, we can present a

T
P

g - S

fancier version of Theorem 5.

THEOREM 5'. The conclusions of Theorem 5 and Corollary 5A are still
valid if the assumptions (b) and (cz) are relaxed, respectively, to
(b') T 1is asymptotically strictly monotone on C, and

(ci) T is maximal monotone, and T and C are in good position.

Theorem 5' clearly subsumes Theorem 5. .By Theorem &4, in order to

prove Theorem 5' it suffices to establish the following.

LEMMA 3. One has (VIII) => (VI) if hypotheses (a), (b') and either
(cl) or (cé) hold.

This lemma was inspired by a certain result of Karamardian for the
problem C&(0) in R (28, Theorem 4.2 and Corollary 4.1] (which built on

his earlier result [26, Theorem 3(1)]).

Proof. Assume that (VIII), (a), (b') and either (cl) or (ci) hold.

Hypothesis (VIII) gives

0 €w+clD, where 6-zka ,

for v e‘l‘(zk). zZ, €C, )‘k >0, zxk =] (summation over k =1,...,m).

Consider 2z, for fixed k. Let (>0 be as guaranteed for.this z,

;:'. by (b'). Consider first the case of (ci). let d € int D be as

o ]

° guaranteed for this 2, by (cé). Pick 61 < -g,ld\l. Then

- (z,d)< 8, = Z € (B . (4.44)

-‘ '

. By (cz) there exists 62 < 51 for which

2
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0 € ri(conv XT) - Ck) . (4.45)

where we write

C

~ + ~
L +A, A= (Ze0cls, < (Fd)< &1 - (4.46)

k

By (4.45) and Proposition 1l(b), the operator T + NC is maximal monotone.
: k
Also, (3.4) - (3.5) imply its effective domain is bounded, since

KT + ch) = XT) N Ck c Ck < S(d,e)- (4.47)

for e:= g(d) - (z.k,d)l- 8,. Therefore, Rockafellar [52, Theorem 4]

implies W = (T + N, ), so
Cie

Vie € R(T + ch) . (4.48)

Now consider the case of (cl). For any d € int D and any

6, < 61<-cud“; define C, and A, again via (4.46). Then Cy is

2 k k
again bounded, by (4.47). Therefore (cl) and the Browder/Hartman-

ck).

Hence, there exists (zl",wl")

Stampacchia theorem (e.g., [24, Theorem 4]) imply W = R(T + N Thus,

(4.48) holds in either case, (cl) or (ci).

g
e

e
Uat)
LA

with

."'V'
e
’ .l .

o

] ] ]
Vi € T(zk) 2y € Ck y Wy - w"‘ ech(zl") .

F v

A

Then

)
:‘1' .'..l. % 'l‘ .I- Yy
PRV e

0> (z-zk, wk-wl") for all =z eck,

e

I WLy W
L
.

v

(z - 2 wl" - wk) > (zl" -2, wl" - wk) =: y for all =2 GCk. (4.49)

k’

.
N

;-.-—. Since vy > 0 by monotonicity of T,
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{(z, wl'c - wk).z 0 for all =z GAk . (4.50)
v

0% Since Ak generates a base for 0+C by Lemma 2, (4.50) implies

R +..0 ‘ +

. L - ' ' o

:ff W T W €-(0C) . Also, zy GCk implies RN €0 c\{0} and,
= using (4.44), 2z -z, € (B. Therefore, (b') implies

~, '
Yy>0. (4.51)
: Since Ak is bounded (being a translate of Ck)’ it is equicontinuous.
\ Hence (using (4.51)), there exists a neighborhood U of the origin such
N .

< that

“‘ {z,w)> -y for all w €Y and all 2z €A . (4.52)
¢

<

o Adding (4.52) and (4.49) yields

=3

o {z, w"(-wk-l-w)zo for all z eAk and all w €U .
k‘
_ By Lemma 2 this implies

:.

- ' - +.,,0

Wi = Y +Uc-(00)

_ and thus, using (3.7),

s

' +.,0

W - v € int(0C) =4intclD .

®

= Since this holds for all indices k,

s
3
.

T Xk(wk - wl'() €int cl D .

Hence, for w:= ¥ Akwl" we obtain

"' .~ h "-‘ -" ."... .-‘n" :‘_-" .

) €-G+1ntc1Dcc1D+intc1D

é

Cint(clD +¢cl D) =intclD = int D,

.l.((

»
.

s A AN

N A




and thus

0 e+ int D . (4.53)
Since zl'( €C, C C and wl" € 'r(zl'c), also
w € conv T(C) . (4.54)

Combining (4.53) and (4.54) establishes (VI).

5. Refinements: the monotone LCP case. The general results of §

o ~all apply, of course, to the linear complementarity problem (abbreviated
LCP) éase, in which T 1is linear and C 1is a cone. Here we'derivg for
this situation tﬁo add;tionai theorems (Theorem§'6 and 7 below) and |
consequences. Also, here most of the earlier results will be recast for |
convenience, and/o¥ sharpened, for this important case.

From now on we denote by L the operator T, assumed linear, and by
Q the set C, assumed to be a cone. By linearity of L we mean either
that 1L 1is an operator which is singlevalued monotone and linear on
QC ML) or else that L 1is a closed, densely defined linear trans-
formation which is monotone, whose adjoint is also monotone, and which
satisfies 0 € int(HL) - Q. Throughout this section we assume L falls
into one of these two cases. Either case ensures that the blanket

hypothesis (cf. (2.3))

M:= L + NQ is maximal monotone (5.1)

TAPNEN

is met (by parts (a) and (b) of Proposition 1 plus the result of Brézis

cited following Proposition 1).

Rt e AT AR YR Y (L ST A A T T N T (T T T L

A R AT .\"l‘-f\ T N T A e A N e R

) T T T e e e e A S e e T AR N W S D L
.......... RS T N W R T L N R N RN A YL N
..... « o _."_\.._--..-_~-_-\.u *v.'n---. I

TS L 5 L ST, SO TR TN CHC S OO A R



(]

-~ - - v v
( " Y £ v,
s e e s st N
DL A

.

. "

o
e
P:.:

o~

RN P T, e M evwa e sy -m~
RSOSSN SN RN RN -.‘:\"\' - "x \,,\ 4- '~ "'\'i\."_:x"\:;&:_\ ',\
LR i ‘) .'...‘.'_'. ARy ...'. CRIC o« : { RRCA LR UL ERS \‘ $ N -~ % _\ ‘

*
Since row D = Q°, by putting Q := - Qo we can rewrite the

parametric solution multifunction Q as
*
ap) = {z €M) |z €Q, Lz - p €Q", (2, Lz - p) =0} (5.2)

for all p €W. Note that, in conformity with the general scheme of 8,
we write Lz - p € Q* in (5.2). Keeping this in mind, there should be
no confusion in comparing the present results with those in the finite-
dimensional LCP literature, whet.'e the corresponding constraint is now

often written as Mz + q 2 0.

COROLLARY 1A. Even without (5.1), for any p € L(Q) - int Q" the

set in (5.2) satisfies
a(p) C {z GQ'(za LZ - P)s Y+ (s’ 'P)} ’
with the set on the right nonempty and bounded, whenever
z:= £ N2 and y:= % )‘k(ﬁ('l“’.‘}?
(sumnation over k = 1,,..,m) satisfy
zZ €QNBL) , A >0, TH =1,
~ * Lo
pELZ-intQ , v+ (z, -p)>0 .
THEOREM 2. Let Z and W be any locally convex Hausdorff spaces
paired in duality, with Z (vcsp. W) assigned the weak (resp. Mackey)

topology induced by the pairing. Assume L 1s singlevalued monotone and

linear on Q < H(L). Then

NN AN "o
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*
L(Q) - int Q c int KO . (5.3)

Of course, (5.3) is in addition to the general inclusions

(cf. (4.19))
MO € L@ +RNY CL@ -, (5.4)
- it Q RO < - q . (5.5)

In regard to (5.4) a well known result of Cottle [12, page 241] shows

that

Y
..
.
.
.
-
Ry
« ®
.-
-
~ .
)
-
-
.
-
‘.
-

KO =L@ - Q (5.6)

.
A
[t

when Z =]Rn, Q =]R::= {zlzi >0 for i = l,...,n} and L is a positive
semidefinite matrix. This result was extended to successively larger
classes of matrices by Lemke [32, Theorem 4], Eaves [18], Garcia [22,
Theorem 3.4], and Doverspike [16, Theorem 3.2].

Lemke in fact gave a celebrated pivoting-type algorithm for finding
an element of Q(p), without assuming such exists, which as a byproduct

establishes (5.6) for L a copositive plus matrix. We wish to point out

that a slight refinement of Lemke's proof of [32, Theorem 4] shows that

. (5.6) holds (in 2 =R" with Q =R:) with his copositive plus assumption

QO i s A
O

on L weakened to:

Y
|

z €Q= (z,Lz) >0 ,
and

‘e [z €Q 1z €Q", 0=(z,Lz)) = Lz + L'z €Q .

. . O U A Il VTN VL L S S T e O P Y R -
P »~ R A I S R AP e S RSN I A '.\v-_.ﬁ . e

R S A A P R L S S P R R SRR LR L Ol '.—‘f'_(-.*':—:-,-.\,:-)_-,-"'.- AN

-

" ‘>_' . "o T e L% I W "u " "'.'-'.‘.""‘-h ¥ '-. '-' '-"-f\. " “» - - RS . N X ‘.'. Tl R R M .n‘ ‘e
O N Y I Y e o I R N R N I N e SO A R B 3 s 81 o N N N o Y R N N A RN A




THEOREM 3. One always has
fnt KO = int(L(Q - Q) , (5.7
el A = el(L(Q - Q) , (5.8)

and, if ¢ # ri(L(Q) - Q¥), also

Py AAIN)

ri B = ri(L(Q) - Q) . (5.8a)

COROLLARY 3B. One has

=B <>W=1LQ - Q .

THEOREM 4. For any fixed p € W, consider the following six
conditions:

¢9) i(p) is nonempty and bounded [compact existence].

an O(p + a) 1is nonempty.and uniformly bounded for all a in
some neighborhood of the origin.

(I11) p €E5) and Q is uniformly bounded for all a in some
neighborhood of p.

av) P € int X0 [sfability].

M) b €1int(L(@ - Q).

(V1) p € L(Q) - int Q* [strict feasibility].

One always has

t' -

’

ol
P

(1) <= (I1) <=> (1I1) <=> (1IV) <=> (V) <= (VI) .

h)
LA

"'rrrv LR ol ol
Shithy '@

e

If Q has a bounded base (i.e., nontrivial bounded section), then all six

[ A

conditions (I) - (VI) are pairwise equivalent, and furthermore,

p € B()\int A = Q(p) contains a halfline . (5.9)
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Proof. Apply the general Thecrem 4 to C:= Q and Tp(z) = Lz -~ p,
obtaining conclusions in terms of the associated multifunction
Qp:' (Tp + NC)'I. Since np(a) =((p +a) for O as in (5.2), the
conclusions can be rewritten as indicated.

Parts of Theorem 4 (LCP case) relate to previous work on the LCP for
the case Z =R" and Q -]R:. For this case, Mangasarian [33, Theorem 2]
has given a number of characterizations of our condition (I), assuming L.
is a copositive plus matrix. Also for this case, work of Doverspike
[16, Theorem 3.3] shar'pens the implication (I) => (IV) for L belonging

to a class of matrices more general than copositive plus,

COROLLARY 4A. Assume Q has a bounded base. Then the three

conditions

compact existence, stablility, strict feasibility,

are pairwise equivalent. Moreover,

int KD = L(Q - int Q" (5.10)
(in addition to (5.7)).

COROLLARY 4B, Let any p €W be fixed. (a) 1In order for i(p + a)
to be nonempty and uniformly bounded for all a in some neighborhood of
the origin, it is sufficient that, for some €>0 and Z € Q N AL)

satisfying LZ - p € Q* the set
{z €Q|(z, LZ - p) < &)}

be bounded. (b) When Q. has a bounded base, in order for QQ(p) to be

nonempty and bounded, it is necessary that some Z € Q N 5(L) satisfy
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LZ - p € int Q* and be such that for all A € [0,%) the sets

{z €Q|(z, 1Z - p - a) <]
‘:f::-j are bounded for all a in some neighborhood of the origin.
-\‘._.

COROLLARY 4C. If Q has a bounded base, then (X(p) is unbounded ;f

"'J and only if p € H()\int H(), in which event ((p) contains at least
o one halfline.
b This overlaps a result of Cottle [13, Theorem 3.1], who treats the

case z =R" and Q =']R2 with L a copositive plus matrix.

0
AP AL AP

hY

[N
® The following theorem sharpens Theorem 4 (LCP case) for the pivotal
&
e parameter choice p = 0,
Co THEOREM 6. Let (I) through (VI ) denote the conditions of
\
R Theorem 4 (LCP case) corresponding to p = Q0. Consider also the following
R
f-jf. four conditions:
o (I‘;) Only z = 0 solves the system
Iad *
::-'_" z €EQNMKL) , Lz € Q , (z'Lz> =0 ;
- .
:-.'i‘-'-: (e3) L is asymptotically strictly monotone on Q (defined in
-‘.-
E_-j\"- §% following Corollary 5A);
-.\: .
o av')y w=5 ;
b (]
i %*
Ny (ve) W=1(Q -Q .
Y
AN One always has
.
o, 7
bt o . ' " -
P (1) <= (1)) <=> (1)) <= (I1 ) <= (III ) <=
t’. < <= (IV') < ' -
=> (IVO) > (IVo) = (Vo) <=> (Vo) < (Vlo) .

a®a®
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If Q has a bounded base, then all ten of these conditions are pairwise

equivalent.

Proof. In view of Theorem 4 (LCP case) and Corollary 3B (LCP case)
it will suffice to show that (Io) > (I;) <=> (18) and (IVO) = (IVé).
The latter follows from (5.7), since L(Q) - Q* is a cone. To see
(Io) a> (I;), observe that if some nonzero z € S(L) satisfied z €Q,
Lz € Q* and {(z,Lz) = 0, then by all the positive homogeneity it would
follow that Q(0) :>{Xz|0 < A € =}, showing ((0) unbounded. Finally,

(I;) is equivalent to -the condition
’ *
(z,Lz) > 0 whenever 0 # z €Q N AL) and Lz €Q .

This implies (take ({ = 0) and is implied by (use homogepeity) the

condition

there exists (>0 such that (z,lLz) >0

whenever z €Q N .D(L))\CB and Lz € Q* .

This is implied by (take 2" = z, z' = 0) the condition that for every
z' € Q NB(L) there exists { >0 such that

(z" - z', L(z" - z')) > 0 whenever
(5.11)

€ ML), 2" - z' €Q\(B, L(z" - z') €Q" .

' the converse

Since (5.11) depends not on z' but only on z = 2" - z
implication also holds. By linearity of L, this last condition is
equivalent to (Ig) .

In view of Theorem 6, nothing new is contributed to the LCP case by

Theorem 5'. This is because Lemma 3, when applied to the present LCP case,

.........
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amounts to the implication (Ig) = (VIo) under hypotheses slightly
{t stronger than required by Theorem 6.
- Parts of Theorem 6 relate to previous work on the LCP for the case
l-, Z =R" and Q -R:. In this case the equivalence among the conditions
(IV‘;) , (VE)), (VIO) has been shown by Mangasarian [33, Corollary 3] for
':-_'. L a copositive plus matrix. The equivalence between (1")) and (IV(',)

) overlaps, agaln for the case 2 =R" and Q -R:, results of Aganagic-
_ Cottle [1] and Pang [46], both of which depend on a result of Karamardian
“_' [27, Theorem 4.1].

- The following is a theorem of the alternative u."ich of course covers
i:: positive semidefinite matrices.
N .
- : COROLLARY 6A., If Q has a bounded base, then exactly one of the
\ . following alternatives holds:
‘n *
% (¢H) there exists 2z such that 0 # z €Q N XL), Lz €Q ,
& (z,Lz) = 0.
*
= (11) there exists z such that z € Q N XL), Lz € int Q .
;l_ Proof. This expresses (I",) <=> (VIo)'
3 |
® Let us say L 1is skew-symmetric (i.e., anti-selfadjoint) if
_; (Lzl,zz) = (zl, -Lzz) for all 2,52, € SL). This implies that
- (z,Lz) = 0 for all z € 5(L).
g
l..
7 COROLLARY 6B. If Q # {0} has a bounded base and L 1is skew-
- *
J: symmetric, then there exists a nonzero 2z € Q N H(L) such that Lz €Q .
.‘
~ _ * - *
® Proof. Suppose 0 € L(Q) - int Q , that is, LZ € int Q for some
- -~ ~ *
- Z €Q NA(L). Necessarily Z # 0, since otherwise 0 = LZ € i{nt Q ,
A
’
¢
’
q

Tate”
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e implying Q* = W, in violation of Q ¥ {0}. Then the proof of Lemma 2

% ) yields (Z,LZ) > 0, violating skew-symmetry. Therefore 0 € L(Q) - int Q*.
\: Now apply Corollary 6A.
B

-:‘ In Corollary 6B it can happen that the 2z in question satisfies

N

1z =0 (e.g., if QC L'l(O)). Also, recall that Tucker's theorem [57,

)

": Theorem 5], which addresses the case Z -]Rn and Q -R: with L a

\ skew-symmetric matrix, assures that the 2z in Corollary 6B can be taken -
: *
\ to satisfy 2z + Lz € int Q also. We note that this additional property
: may fail for other choices of Q, as is illustrated in Rz by
4" .

. [o 1]

3 L [_1 0 and

b4

o Q= {z|c.22 22z, and az, > -z-l} for any 0<a <v2 -1,

- It follows from the proof given below for (5.13) that under the
_ hypothe: 's of Corollary 6B there exists z, € Z such that

0%z and (z,8)<0 forall a €50 . (5.12)
THEOREM 7. Assume Q ¥ {0} has a bounded base and that L is skew-
-

- symmetric, S(L) =Z and L 1is continuous. Then for each

. P € A(OD)\ int BH() there exists z, €Z such that
.' 0¢ 2, and (zp,a) < (zp,p) for all a € X0O) , (5.13)

. . or equivalently,

- *

0¥z €Q, Lz €Q , {(z.,p)=0, (5.14)

. P P p

® or equivalently,

o +
0 ¢ z, €0 Qp) . (5.15)




In particular, there exists 24 € Z such that

0 %z €00) =@ N1 QY = 0%a(p) forall pEL@ -Q,
(5.16)

where

3(p):={z eML|z €Q, Lz-p€QT. (5.17)

Proof. Assume Q has a bounded base. Then int HX() is nonempty,
by (3.3)‘ and (5.7), and convex, by Corollary 3A applied to (= (L + NQ)-I
via (5.1). Hence, by the separation theorem, for each p € H(()\int HO)
there exis‘s zp such that (5.13) holds. In view of (5.7), it is routine
to show (5.i.3) equivalent to (5.14) (use -L* =1 and Qoo = Q) Now
assume JSH(L) = Z and that L 1is continuous. Since. for any

* .
P €EL(Q) - Q the nonempty set §(p) given by (5.17) can be written
-1, %
¢p) =QNL "(Q +9p),
it follows from Rockafellar [49, Theorem 2A(b)] and continuity of L that
+ - *
0*8(p) = no*L i + p .

-1, * - *
From the definitions, 0+L 1(Q +p)OL 10+(Q + p). On the other hand,
~ + -1 % -1, *
suppose z €0 L (Q +p). Pickany z €L (Q + p). By [49,
Theorem 2A(b)], z + AZ € L'I(Q* +p) for all A >0, so
~ * -~
Lz + ALz €Q + p for all A >0, Hence Lz € 0"'(()"r + p), using [49,

Theorem 2A(b) ] once more, Thus,

+ -1 * ST BU
OL (W +p) =L 0(Q +p) .
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Since clearly 01(Q" + p) = Q°, we have shown

otap) = N1 Q") forall peL@ -Q . (5.18)
Now assume L 1is skew-symmetric. Then

ap) = 8(p) N {z €2](z,p) = 0},
so (using [49, Theorem 2A(b) ] again)

0*a() = 0%4(») N {z €z|(z,p) = 0} for all p € XD . (5.19)

The eq.uivalence be;tween (5.15) and (5.14) now follows by cémbining-(5.19)
with (5.18). The last assertion follows from what has already.-been.
esféblished, si.n'ce 0 € H()\int H(() when L -is iskew-symetric and
Q # {0} (by the proof of Corollary 6B).

Conclusion (5.16) can be compared with a result obtained by Lemke
{32, Theorem 5] for the case 2Z aR" and Q -I{: with L a positive
semidefinite matrix. He showed that for each p € L(Q) ~ Q* for which
$(p) 1is nondegenerate, $(p) must contain at least n rays (some of
which might conceivably be parallel). Notice that &(p) nondegenerate
implies (i(p) has at most one element, hence by Cottle's result (5.6)
exactly one element, and thus by (5.15), (5.9) and (5.10) requires that
P EL(Q - int Q.

A toy illustration of Theorem 7 (yet one adequate for §6) is provided
in ]R2 with Q-Ri and L = [.(]). ‘1)] . One has
L@ - Q" = {ulw, €R, w, <0} = B(D. For p €L - Q°, ¥(») s

given by:
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2 {zl]o <z <-py, Py Sz, <@} if p >0 and p, <0,

>

{zlo<z <-p,, 0<2,<=) if p, <0 and p, <0 .

2

For p € KD, Q(p) 1is given by:

{z[z, =0, py<z,<®} 1f p, >0 and p, =0,
{¢-pysp))]) if p; >0 and p, <0,
{zl0<z <-p), 0=2,}1f p =0 and p <0,
SN
L
X {¢0,0)} 1f p, <0 and p, <0,
o - )
.!. {zlzl 0,05z2<c} if p1<0 and Py 0.
e
L.
: 6. Application to linear programming in reflexive Banach spaces.

All the results of §§-5 apply to the fundamental problems called linear
programs, as follows. Let X (resp. Y) be a reflexive Banach space with
dual V (resp. U), and let Q1 (resp. Qz) be a nonempty closed convex
cone in X (resp. Y). Write Q: = -Q: for 1 = 1,2, Llet A be a

closed, densely defined linear transformation from X into U. Recall

*
that then the adjoint A of A, mapping Y into V, is also a closed,

L’.:_l

R. densely defined lincar transformation, and if [MA) = X with A

\.:_-. * .
;‘:: continuous, then .&(A*) =Y with A continuous. For each fixed para-
RSO

:::jf meter pair (c,b) € V x U, the optimization problems

‘.

S *

~im inf{{x,e)x € Q NB&@). Ax - b €Q,), P(c,b)
,\::";:: * * *

':‘:-: sup{(b,y)'y € Qz n HA), -Ay + ¢ 1S Ql} D(c,b)
.

AL

S

o

s

”
»

&
L )

S .
) -
.

.... PR A, ¥ R R S L LR I IR P
- N TR e L S LR AR W S S W A S, i 1 ) ey
N N SRR A N AR \";\::\" \:\"y" ~

l. .. O. '. .- * '. .. .. ‘. '.. l- o '.

e L NS LA AN AR _J}.{‘.P:\.F:'CM 2':.



[an e 2]

.. ."- LA 4 S L

AR A
L

rr .
1

e ] hl e

ON

ryrrwvew

"I
k)

correspond to the classical primal-dual pair of linear programming

problems. For a comprehensive treatment of the basic, finite-dimensional
case, see Dantzig [15]. Extension of the theory to infinite dimensions
was initiated by Duffin [17]; see Nakamura-Yamasaki [45] and the references
therein for further infinite-dimensional results,

To apply the present results to the dual pair P(c,b), D(c,b) of linear
programs, one verifies first without difficulty that a pair (x,y) 1is such
that x solves P(c,b) and y solves D(c,b) 1f and only }f it satisfies

the conditions

x €Q NAA) , Ax - b €0, , (6.1)
y €Q N5A" , Ay +eceq], (6.2)
(x,c¢) = (,y) . (6.3)

Next, introduce

Z:=X XY, W:=V XU, (z,w):= <x.§) + (u,y),

Q:= Ql X Q2 s P:= (-c,b) , a:= (-v,u) ,

and define a closed, densely defined linear transformation L from 2

into W via
L(z) = L(x,y) := (-A"y,Ax) on B(L):= S(A) x SA”) . (6.4)
This leads to the adjoint given by
L* = -L on B0™) = BqL) (6.5)

so L 1is skew-symmetric. It can be shown that




L 1is maximal monotone (6.6)

(for such an A) without using the reflexive Banach space assumption,

that is, in the general setting of X and V (resp. Y and U) locally

convex Hausdorff spaces paired in duality.

To ensure the blanket hypothesis (5.1), we assume that

either 91 CNA) and QO C D(a*) (6.7a)

or 0 € int(D(A) - Q¢) and 0 € int(D(A*) - Qj) . (6.7b)

This is of course satisfied trivially if B(A) = X with A continuous.

One can check easily that, for p = (-c,b), the solution set ((p)

in (5.2) and the feasible set &(p) 1in (5.17) here take the form

Q) = {3 | (x,y) satisfies (6.1), (6.2), (6.3))
=e(p) N {(x,y)[¢x,c) = (,y)} ."
= {x|x solves P(c,b)} x {y|y solves D(c,b)} (6.8) 3
and o
8(p) = {(x,y) ]| (x,y) satisfies (6.1), (6.2)) 1

[}
P

{x|x feasible for P(c,b)} x {yly feasible for D(c,b) ] .
6.9)

The condition frequently invoked in §§4-5 that Q have a bounded

base (i.e., bounded nontrivial section) becomes here the condition

both Q1 and Q2 have a bounded base , (6.10)
which by (3.3) 1is equivalent to the condition

¢ ¥ int Q: and ¢ # int Q; . (6.11)
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=
;"; With the above identifications, all the results of §§-5 apply to
‘£4 : P(c,b) and D(c,b) with (c,b) treated as the parameter. Various new facts
-
o are obtained about linear programming.
W
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